At birth, tarsiers lack a postorbital bar or septum.
نویسندگان
چکیده
Among primates, partial or complete posterior closure of the orbit has been widely accepted as a shared derived characteristic justifying an exclusive tarsier-anthropoid clade, while some regard the tarsier lateral orbit as an elaborated postorbital bar (POB). To test these competing hypotheses while minimizing the confounding effect of tarsier orbital hypertrophy, we compared tarsiers and other primates at early (fetal and newborn) ages using dissection, micro-CT scans and soft tissue histology. Our findings demonstrate unanticipated variation in the anatomy and development of the zygomaticofrontal (ZFA) articulation, which forms the orbit's lateral framework. Tarsiers uniquely exhibit a combination of two features: absence of a pre- and peri-natal frontal spur to join with the zygomatic to form the ZFA; and, the spur's substitution by an elaborate ligament, which envelops the eye laterally as an expansive postorbital membrane (POM) that merges with the anterolateral fontanelle of the lateral cranial vault. In lacking a frontal spur, tarsiers are distinct from strepsirhines, while the ligamentous structure of the POM distinguishes its ZFA from that of anthropoids, which is a typical facial suture at and prior to birth. The POM of tarsiers may be thought of as an accessory fontanelle, a structural compromise that provides flexible stability and spatial separation of bones while anticipating rapid postnatal growth of an enormously enlarged eye. We regard the tarsier POM as part of a neomorphic eyeball hypertrophy complex, and reject the hypothesis of derived homology of the postorbital septa of adult tarsiers and anthropoids on histological, developmental and functional grounds.
منابع مشابه
Oculomotor Stability and the Functions of the Postorbital Bar and Septum
The postorbital bar and septum are circumorbital structures that are important to adaptive hypotheses for the origins of primates and haplorhines, respectively. All primates possess complete postorbital bars, bony arches formed by processes of the frontal and zygomatic bones that encompass the lateral aspect of the eye. Postorbital septa, bony walls formed by the frontal, zygomatic and alisphen...
متن کاملEvolutionary morphology, cranial biomechanics and the origins of tarsiers and anthropoids
During the Time of Messel, the dominant groups of primates were the adapiform strepsirhines and the tarsiiform haplorhines, both important in discussions of anthropoid origins. Living tarsiers are at the centre of these ideas as one school of thought, representing the Tarsier-Anthropoid Hypothesis, holds they are the sister-group of Anthropoidea. The Tarsier-Tarsiiform Hypothesis, however, main...
متن کاملIn vivo and in vitro bone strain in the owl monkey circumorbital region and the function of the postorbital septum.
Anthropoids and tarsiers are the only vertebrates possessing a postorbital septum. This septum, formed by the frontal, alisphenoid, and zygomatic bones, separates the orbital contents from the temporal muscles. Three hypotheses suggest that the postorbital septum evolved to resist stresses acting on the skull during mastication or incision. The facial-torsion hypothesis posits that the septum r...
متن کاملMasticatory loading, function, and plasticity: a microanatomical analysis of mammalian circumorbital soft-tissue structures.
In contrast to experimental evidence regarding the postorbital bar, postorbital septum, and browridge, there is exceedingly little evidence regarding the load-bearing nature of soft-tissue structures of the mammalian circumorbital region. This hinders our understanding of pronounced transformations during primate origins, in which euprimates evolved a postorbital bar from an ancestor with the p...
متن کاملIn vivo bone strain and finite-element modeling of the craniofacial haft in catarrhine primates.
Hypotheses regarding patterns of stress, strain and deformation in the craniofacial skeleton are central to adaptive explanations for the evolution of primate craniofacial form. The complexity of craniofacial skeletal morphology makes it difficult to evaluate these hypotheses with in vivo bone strain data. In this paper, new in vivo bone strain data from the intraorbital surfaces of the supraor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Anatomical record
دوره 296 3 شماره
صفحات -
تاریخ انتشار 2013